A Multi-View Dense Point Cloud Generation Algorithm Based on Low-Altitude Remote Sensing Images
نویسندگان
چکیده
This paper presents a novel multi-view dense point cloud generation algorithm based on low-altitude remote sensing images. The proposed method was designed to be especially effective in enhancing the density of point clouds generated by Multi-View Stereo (MVS) algorithms. To overcome the limitations of MVS and dense matching algorithms, an expanded patch was set up for each point in the point cloud. Then, a patch-based Multiphoto Geometrically Constrained Matching (MPGC) was employed to optimize points on the patch based on least square adjustment, the space geometry relationship, and epipolar line constraint. The major advantages of this approach are twofold: (1) compared with the MVS method, the proposed algorithm can achieve denser three-dimensional (3D) point cloud data; and (2) compared with the epipolar-based dense matching method, the proposed method utilizes redundant measurements to weaken the influence of occlusion and noise on matching results. Comparison studies and experimental results have validated the accuracy of the proposed algorithm in low-altitude remote sensing image dense point cloud generation.
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملAssessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery
Sensor miniaturisation, improved battery technology and the availability of low-cost yet advanced Unmanned Aerial Vehicles (UAV) have provided new opportunities for environmental remote sensing. The UAV provides a platform for close-range aerial photography. Detailed imagery captured from micro-UAV can produce dense point clouds using multi-view stereopsis (MVS) techniques combining photogramme...
متن کاملUsing 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure
In the context of precision viticulture, remote sensing in the optical domain offers a potential way to map crop structure characteristics, such as vegetation cover fraction, row orientation or leaf area index, that are later used in decision support tools. A method based on the RGB color model imagery acquired with an unmanned aerial vehicle (UAV) is proposed to describe the vineyard 3D macro-...
متن کاملA Multi-View Dense Image Matching Method for High-Resolution Aerial Imagery Based on a Graph Network
Multi-view dense matching is a crucial process in automatic 3D reconstruction and mapping applications. In this paper, we present a robust and effective multi-view dense matching algorithm for high-resolution aerial images based on a graph network. The overlap ratio and intersection angle between image pairs are used to find candidate stereo pairs and build the graph network. A Coarse-to-Fine s...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016